Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/knowledge_accumulator/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Knowledge Accumulator | Telegram Webview: knowledge_accumulator/140 -
Telegram Group & Telegram Channel
GPT-4 vs ARC: как оно сейчас и конец ли это?

Напомню про существование ARC - бенчмарка системы на способность обучаться задаче по паре примеров. Он задизайнен таким образом, чтобы исключить необходимость понимать человеческие концепты - язык, образы т.д. и проверять только на обучаемость. В этом бенчмарк сильно непохож на GAIA, про который я тоже писал пост. Примеры задач на картинке.

Вы нечасто увидите проверку на нём, поскольку в вопросах обучаемости наши алгоритмы ужасно отстают от человека и просвета в этом вопросе нет. Давайте посмотрим на последние результаты проверки моделей GPT-4 и GPT-4V на нём.

Итак, тестирование проводят на 480 задачках из 16 категорий. Люди решают в среднем 91% задач. Первое место с kaggle-соревнования по ARC набирает около 52% - это по сути полный перебор всевозможных коротких "программ" из 4 преобразований. GPT-4 при новом улучшенном дизайне промпта с примерами решения других задач набирает 33%.

Далее из 480 задач выбирают 48 самых простых, требующих "одношагового" понимания концепта и прогоняют на них ещё и мультимодальную GPT-4V - если до этого задачки преобразовывали в текст, теперь показывают оригинал. Результаты становятся ещё более печальными - 95% человек / 69% GPT-4 / 25% GPT-4V.

Означает ли это бесполезность применения таких моделей? Не совсем. Как уже показали примеры AlphaCode и FunSearch, LLM может использоваться в качестве "генератора идей", с её помощью можно сгененировать много не всегда качественных решений-кандидатов. Но нужен и механизм "валидации" этих идей, чтобы выбрать финальную и её тестировать.

Проблема только в том, что, в отличие от FunSearch, у нас есть всего пара примеров и сгенерированная программа либо полностью неверна, либо полностью верна, что не позволяет проводить никакую оптимизацию решения. А непохожим на AlphaCode этот случай делает то, что у модели нет огромного количества решений подобных задач в обучающих данных, поэтому никакой Pattern matching решений ей недоступен.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/140
Create:
Last Update:

GPT-4 vs ARC: как оно сейчас и конец ли это?

Напомню про существование ARC - бенчмарка системы на способность обучаться задаче по паре примеров. Он задизайнен таким образом, чтобы исключить необходимость понимать человеческие концепты - язык, образы т.д. и проверять только на обучаемость. В этом бенчмарк сильно непохож на GAIA, про который я тоже писал пост. Примеры задач на картинке.

Вы нечасто увидите проверку на нём, поскольку в вопросах обучаемости наши алгоритмы ужасно отстают от человека и просвета в этом вопросе нет. Давайте посмотрим на последние результаты проверки моделей GPT-4 и GPT-4V на нём.

Итак, тестирование проводят на 480 задачках из 16 категорий. Люди решают в среднем 91% задач. Первое место с kaggle-соревнования по ARC набирает около 52% - это по сути полный перебор всевозможных коротких "программ" из 4 преобразований. GPT-4 при новом улучшенном дизайне промпта с примерами решения других задач набирает 33%.

Далее из 480 задач выбирают 48 самых простых, требующих "одношагового" понимания концепта и прогоняют на них ещё и мультимодальную GPT-4V - если до этого задачки преобразовывали в текст, теперь показывают оригинал. Результаты становятся ещё более печальными - 95% человек / 69% GPT-4 / 25% GPT-4V.

Означает ли это бесполезность применения таких моделей? Не совсем. Как уже показали примеры AlphaCode и FunSearch, LLM может использоваться в качестве "генератора идей", с её помощью можно сгененировать много не всегда качественных решений-кандидатов. Но нужен и механизм "валидации" этих идей, чтобы выбрать финальную и её тестировать.

Проблема только в том, что, в отличие от FunSearch, у нас есть всего пара примеров и сгенерированная программа либо полностью неверна, либо полностью верна, что не позволяет проводить никакую оптимизацию решения. А непохожим на AlphaCode этот случай делает то, что у модели нет огромного количества решений подобных задач в обучающих данных, поэтому никакой Pattern matching решений ей недоступен.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/140

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

To pay the bills, Mr. Durov is issuing investors $1 billion to $1.5 billion of company debt, with the promise of discounted equity if the company eventually goes public, the people briefed on the plans said. He has also announced plans to start selling ads in public Telegram channels as soon as later this year, as well as offering other premium services for businesses and users.

Knowledge Accumulator from cn


Telegram Knowledge Accumulator
FROM USA